- Current Electricity
- Current Electricity
- Magnetic Effects of Current and Magnetism
- Electromagnetic Induction and Alternating Currents
- Electromagnetic Waves
- Optics
- Dual Nature of Matter and Radiation
- Atoms and Nuclei
- Electronic Devices

## SCIENCE

Nutrition in Plants |

Nutrition in Animals |

Fibre to Fabric |

Heat |

Acids, Bases, and Salts |

Physical and Chemical Changes |

Weather Climate and Adaptation of Animals to Climate |

Winds, Storms, and Cyclones |

Soil |

Respiration in Organisms |

Transportation in Animals and Plants |

Reproduction in Plants |

Motion and Time |

Electric Current and Its Effects |

Light |

Water: A Precious Resource |

Forest: our Lifeline |

Waste Water Story |

## MDS

- General Anatomy including embryology and histology
- General human physiology and Biochemistry
- Dental Anatomy, Embryology and Oral Histology
- General Pathology and Microbiology
- General and Dental Pharmacology and Therapeutics
- Dental Materials
- General Medicine
- General Surgery
- Oral Pathology and Oral Microbiology
- Oral Medicine and Radiology
- Pedodontics and Preventive Dentistry
- Orthodontics and Dentofacial Orthopedics
- Periodontology
- Prosthodontics and Crown and Bridge
- Conservative Dentistry and Endodontics
- Oral and Maxillofacial Surgery
- Public Health Dentistry

## DU LLB

**DU LLB Exam Pattern**

The exam pattern of DU LLB is announced by the University of Delhi along with the application form. By consulting DU LLB Exam Pattern, candidates get an idea of the total marks, important subjects, syllabus, marking scheme, duration of the exam and distribution of marks in the question paper. As per the DU LLB Exam Pattern, questions are asked from subjects like, English Language and Comprehension, Analytical Abilities, General Knowledge and Current Affairs and Legal Awareness and Aptitude. A total of 100 questions of 400 marks are asked.

**DU LLB Syllabus**

- English language comprehension
- Analytical abilities
- Legal awareness and aptitude
- General knowledge

## PHYSICS

**MODERN PHYSICS:**

- Atomic Structure in Modern Physics
- Experimental Physics
- Nuclear Physics and Radioactivity
- Photo-Electric Effect and Electromagnetic Waves
- Semiconductors and Communication System

**MECHANICS 2:**

- Center of Mass and Momentum Conservation
- Circular Motion
- Gravitation
- Properties of Matter and Fluid Mechanics
- Rotation
- Simple Harmonic Motion (SHM)

**ELECTRO-MAGNETISM:**

- Electric charges and Fields
- Electric Current
- Electric potential and Capacitance
- Electromagnetic Induction and Alternating Current
- Electrostatics
- Classical magnetism and Magnetic Properties of Matter
- Magnetism

**HEAT AND THERMODYNAMICS:**

- Heat Transfer
- Laws Of Thermodynamics
- Thermal Properties Of Matter, Calorimetry And Kinetic Theory Of Gases

**OPTICS:**

**MECHANICS-1:**

- Mathematics in Physics
- Motion in One Dimension
- Motion in Two Dimension and Projectile Motion
- Newton’s Laws of Motion
- Units and Dimensions
- Work, Power and Energy

**SECTION – A**

**PHYSICS AND MEASUREMENT**

Physics, technology and society, S I s, Fundamental and derived s. Least count, accuracy and precision of measuring instruments, Errors in measurement, Dimensions of Physical quantities, dimensional analysis and its applications.

**KINEMATICS**

Frame of reference. Motion in a straight line: Position-time graph, speed and velocity. Uniform and non-uniform motion, average speed and instantaneous velocity Uniformly accelerated motion, velocity-time, position-time graphs, relations for uniformly accelerated motion. Scalars and Vectors, Vector addition and Subtraction, Zero Vector, Scalar and Vector products, Vector, Resolution of a Vector. Relative Velocity, Motion in a plane, Projectile Motion, Uniform Circular Motion.

**LAWS OF MOTION**

Force and Inertia, Newton’s First Law of motion; Momentum, Newton’s Second Law of motion; Impulse; Newton’s Third Law of motion. Law of conservation of linear momentum and its applications, Equilibrium of concurrent forces.

Static and Kinetic friction, laws of friction, rolling friction.

Dynamics of uniform circular motion: Centripetal force and its applications.

**WORK, ENERGY AND POWER**

Work done by a constant force and a variable force; kinetic and potential energies, workenergy theorem, power.

Potential energy of a spring, conservation of mechanical energy, conservative and nonconservative forces; Elastic and inelastic collisions in one and two dimensions.

**ROTATIONAL MOTION**

Centre of mass of a two-particle system, Centre of mass of a rigid body; Basic concepts of rotational motion; moment of a force, torque, angular momentum, conservation of angular momentum and its applications; moment of inertia, radius of gyration. Values of moments of inertia for simple geometrical objects, parallel and perpendicular axes theorems and their applications. Rigid body rotation, equations of rotational motion.

**GRAVITATION**

The universal law of gravitation. Acceleration due to gravity and its variation with altitude and depth. Kepler’s laws of planetary motion. Gravitational potential energy; gravitational potential. Escape velocity. Orbital velocity of a satellite. Geo-stationary satellites.

**PROPERTIES OF SOLIDS AND LIQUIDS**

Elastic behaviour, Stress-strain relationship, Hooke’s Law, Young’s modulus, bulk modulus, modulus of rigidity. Pressure due to a fluid column; Pascal’s law and its applications. Viscosity, Stokes’ law, terminal velocity, streamline and turbulent flow, Reynolds number. Bernoulli’s principle and its applications. Surface energy and surface tension, angle of contact,application of surface tension – drops, bubbles and capillary rise. Heat, temperature, thermal expansion; specific heat capacity, calorimetry; change of state, latent heat. Heat transfer-conduction, convection and radiation, Newton’s law of cooling.

**THERMODYNAMICS**

Thermal equilibrium, zeroth law of thermodynamics, concept of temperature. Heat, work and internal energy. First law of thermodynamics. Second law of thermodynamics: reversible and irreversible processes. Carnot engine and its efficiency.

**KINETIC THEORY OF GASES**

Equation of state of a perfect gas, work doneon compressing a gas.Kinetic theory of gases – assumptions, concept of pressure. Kinetic energy and temperature: rms speed of gas molecules; Degrees of freedom, Law of equipartition of energy,applications to specific heat capacities of gases; Mean free path, Avogadro’s number.

**OSCILLATIONS AND WAVES**

Periodic motion – period, frequency, displacement as a function of time. Periodic functions. Simple harmonic motion (S.H.M.) and its equation; phase; oscillations of a spring -restoring force and force constant; energy in S.H.M. – kinetic and potential energies; Simple pendulum – derivation of expression for its time period; Free, forced and damped oscillations, resonance.

Wave motion. Longitudinal and transverse waves, speed of a wave. Displacement relation for a progressive wave. Principle of superposition of waves, reflection of waves, Standing waves in strings and organ pipes, fundamental mode and harmonics, Beats, Doppler effect in sound

**ELECTROSTATICS**

Electric charges: Conservation of charge, Coulomb’s law-forces between two point charges, forces between multiple charges; superposition principle and continuous charge distribution.

Electric field: Electric field due to a point charge, Electric field lines, Electric dipole, Electric field due to a dipole, Torque on a dipole in a uniform electric field.

Electric flux, Gauss’s law and its applications to find field due to infinitely long uniformly charged straight wire, uniformly charged infinite plane sheet and uniformly charged thin spherical shell. Electric potential and its calculation for a point charge, electric dipole and system of charges; Equipotential surfaces, Electrical potential energy of a system of two point charges in an electrostatic field.

Conductors and insulators, Dielectrics and electric polarization, capacitor, combination of capacitors in series and in parallel, capacitance of a parallel plate capacitor with and without dielectric medium between the plates, Energy stored in a capacitor.

**CURRENT ELECTRICITY**

Electric current, Drift velocity, Ohm’s law, Electrical resistance, Resistances of different materials, V-I characteristics of Ohmic and nonohmic conductors, Electrical energy and power, Electrical resistivity, Colour code for resistors; Series and parallel combinations of resistors; Temperature dependence of resistance. Electric Cell and its Internal resistance, potential difference and emf of a cell, combination of cells in series and in parallel. Kirchhoff’s laws and their applications. Wheatstone bridge, Metre bridge. Potentiometer – principle and its applications.

**MAGNETIC EFFECTS OF CURRENT AND MAGNETISM**

Biot – Savart law and its application to current carrying circular loop. Ampere’s law and its applications to infinitely long current carrying straight wire and solenoid. Force on a moving charge in uniform magnetic and electric fields. Cyclotron.

Force on a current-carrying conductor in a uniform magnetic field. Force between two parallel current-carrying conductors-definition of ampere. Torque experienced by a current loop in uniform magnetic field; Moving coil galvanometer, its current sensitivity and conversion to ammeter and voltmeter.

Current loop as a magnetic dipole and its magnetic dipole moment. Bar magnet as an equivalent solenoid, magnetic field lines; Earth’s magnetic field and magnetic elements. Para-, dia- and ferro- magnetic substances.

Magnetic susceptibility and permeability, Hysteresis, Electromagnets and permanent magnets.

**ELECTROMAGNETIC INDUCTION AND ALTERNATING CURRENTS**

Electromagnetic induction; Faraday’s law, induced emf and current; Lenz’s Law, Eddy currents. Self and mutual inductance. Alternating currents, peak and rms value of alternating current/ voltage; reactance and impedance; LCR series circuit, resonance; Quality factor, power in AC circuits, wattless current. AC generator and transformer.

**ELECTROMAGNETIC WAVES**

Electromagnetic waves and their characteristics. Transverse nature of electromagnetic waves.

Electromagnetic spectrum (radio waves, microwaves, infrared, visible, ultraviolet, Xrays, gamma rays). Applications of e.m. waves.

**OPTICS**

Reflection and refraction of light at plane and spherical surfaces, mirror formula, Total internal reflection and its applications, Deviation and Dispersion of light by a prism, Lens Formula, Magnification, Power of a Lens, Combination of thin lenses in contact, Microscope and Astronomical Telescope (reflecting and refracting) and their magnifying powers.

Wave optics: wavefront and Huygens’ principle, Laws of reflection and refraction using Huygen’s principle. Interference, Young’s double slit experiment and expression for fringe width. Diffraction due to a single slit, width of central maximum. Resolving power of microscopes and astronomical telescopes, Polarisation, plane polarized light; Brewster’s law, uses of plane-polarized light and Polaroids.

**DUAL NATURE OF MATTER AND RADIATION**

Dual nature of radiation. Photoelectric effect, Hertz and Lenard’s observations; Einstein’s photoelectric equation; particle nature of light. Matter waves-wave nature of particle, de Broglie relation. Davisson-Germer experiment.

**ATOMS AND NUCLEI**

Alpha-particle scattering experiment; Rutherford’s model of atom; Bohr model, energy levels, hydrogen spectrum. Composition and size of nucleus, atomic masses, isotopes, isobars; isotones. Radioactivity-alpha, beta and gamma particles/rays and their properties; radioactive decay law. Mass-energy relation, mass defect; binding energy per nucleon and its variation with mass number, nuclear fission and fusion.

**ELECTRONIC DEVICES**

Semiconductors; semiconductor diode: I-V characteristics in forward and reverse bias; diode as a rectifier; I-V characteristics of LED, photodiode, solar cell and Zener diode; Zener diode as a voltage regulator. Junction transistor, transistor action, characteristics of a transistor; transistor as an amplifier (common emitter configuration) and oscillator. Logic gates (OR, AND, NOT, NAND and NOR). Transistor as a switch.

**COMMUNICATION SYSTEMS**

Propagation of electromagnetic waves in the atmosphere; Sky and space wave propagation, Need for modulation, Amplitude and Frequency Modulation, Bandwidth of signals, Bandwidth of Transmission medium, Basic Elements of a Communication System (Block Diagram only).

**SECTION –B**

**EXPERIMENTAL SKILLS**

Familiarity with the basic approach and observations of the experiments and activities:

- Vernier callipers-its use to measure internal and external diameter and depth of a vessel.
- Screw gauge-its use to determine thickness/diameter of thin sheet/wire.
- Simple Pendulum-dissipation of energy by plotting a graph between square of amplitude and time.
- Metre Scale – mass of a given object by principle of moments.
- Young’s modulus of elasticity of the material of a metallic wire.
- Surface tension of water by capillary rise and effect of detergents.
- Co-efficient of Viscosity of a given viscous liquid by measuring terminal velocity of a given spherical body.
- Plotting a cooling curve for the relationship between the temperature of a hot body and time.
- Speed of sound in air at room temperature using a resonance tube.
- Specific heat capacity of a given (i) solid and (ii) liquid by method of mixtures.
- Resistivity of the material of a given wire using metre bridge.
- Resistance of a given wire using Ohm’s law.
- Potentiometer –

(i) Comparison of emf of two primary cells.

(ii) Determination of internal resistance of a cell.

- Resistance and figure of merit of a galvanometer by half deflection method.
- Focal length of:

(i) Convex mirror

(ii) Concave mirror, and

(iii) Convex lens using parallax method.

- Plot of angle of deviation vs angle of incidence for a triangular prism.
- Refractive index of a glass slab using a travelling microscope.
- Characteristic curves of a p-n junction diode in forward and reverse bias.
- Characteristic curves of a Zener diode and finding reverse break down voltage.
- Characteristic curves of a transistor and finding current gain and voltage gain.
- Identification of Diode, LED, Transistor, IC, Resistor, Capacitor from mixed collection of such items.
- Using multimeter to:

(i) Identify base of a transistor

(ii) Distinguish between npn and pnp type transistor

(iii) See the unidirectional flow of current in case of a diode and an LED.

(iv) Check the correctness or otherwise of a given electronic component (diode, transistor or IC).

## CMAT

CMAT Exam Pattern:

- CMAT Exam Structure Details
- Number of sections 4 (Quantitative Techniques and Data Interpretation, Logical Reasoning, Language Comprehension, General Awareness)

- Mode of examination Online
- Duration of exam 180 minutes
- Number of Shifts 2 (9:30 am to 12:30 am and 2:30 pm to 5:30 pm)
- Number of questions 100
- Total Marks 400
- Number of answer choices 4
- CMAT Marking scheme +4 marks for correct answer -1 mark for incorrect answer
- Language of paper English

**CMAT Exam Pattern: Overall and Sectional Time Limit**

CMAT Sections Number of Questions Maximum Marks Allotted to the Sections

Quantitative Techniques & Data Interpretation 25 100

Logical Reasoning 25 100

Language Comprehension 25 100

General Awareness 25 100

Total 100 400

**CMAT Marking Scheme**

- Right answer +4
- Wrong answer -1
- Blank question No deduction

**Section wise CMAT Syllabus**

**Quantitative Techniques & Data Interpretation**

- Tabulation
- Partnership
- Geometry
- Pipes and Cisterns
- Simple Interest and Compound Interest
- Time-Speed-Distance
- Probability
- Allegation & Mixtures
- Profit and Loss
- Permutations & Combinations
- Percentages
- Work and Time
- In-equations
- Quadratic and linear equations
- Mensuration
- Algebra
- Graph
- Number System
- Ratio and Proportion
- Line
- Pie Chart, Bar Chart

** **

**Logical Reasoning**

**Analytical Reasoning**

** **

- Analogy Test
- Direction and Distance Test
- Linear Arrangements
- Blood Relationship Tests
- Ranking Tests
- Statements and Arguments
- Coding and Decoding
- Statements Assumptions
- Sequencing
- Inferences
- Statements and Conclusion
- Matrix Arrangements
- Non-Verbal Reasoning
- Symbol Based Problems
- Number Series
- Cause and Effects

**Language Comprehension**

- Reading Comprehension
- English Usage Errors
- Synonyms
- English Grammar
- Paragraph Completion
- Antonyms
- Jumbled Para
- One-word Substitution
- Sentence Improvement
- Sentence Correction
- Idioms
- Phrases

**General Awareness**

- Literature
- Trade Awareness
- Geography
- Indian Constitution
- Politics
- History
- Current Affairs of National and International Economy
- Economics
- Culture
- Personalities in News
- Sports News
- Science in the Everyday Life

** **

## SCIENCE

- Fundamental of Physics
- Fundamentals of Chemistry
- Introduction of Biology
- Mechanical Force
- Matter
- Plants
- Work & Pressure
- Elements, compounds and mixtures
- Animal
- Energy
- Physical & chemical changes
- Our environment
- Magnetism
- Air
- Water
- Rock & Soil

## MATHS

- Real Number
- Polynomials
- Pair of Linear Equations in Two Variables
- Quadratic Equations
- Arithmetic Progressions
- Triangles
- Coordinate Geometry
- Introduction to Trigonometry
- Some Applications of Trigonometry
- Circles
- Constructions
- Areas Related to Circles
- Surface Areas and Volumes
- Statistics
- Probability

## ENGLISH

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.

## MATHS

- Sets, Relations and Functions
- Trigonometric Functions Phase 1
- Trigonometric Functions Phase 2
- Principle of Mathematical Induction
- Complex Numbers
- Quadratic Equations
- Linear Inequalities
- Permutations and Combinations
- Binomial Theorem
- Sequence and Series
- Straight Lines
- Pair of Lines
- Conic Sections
- Circles
- Introduction to Three Dimensional Geometry
- Limits and Derivatives
- Probability
- Statistics and Mathematical Reasoning